Publication Types:

Hormesis shifts the no-observed-adverse-effect level (NOAEL)

Journal Paper
Agathokleous E., Saitanis C.J. AND Markouizou A.
Dose-Response (Accepted)
Publication year: 2021

Data from recent dose-response toxicological studies suggest that the no-observed-adverse-effect-level (NOAEL) may depend upon whether hormesis is present. A further examination of these data supports this hypothesis by showing that the NOAEL was greater for living units (organisms or cells) showing hormesis than for living units showing no hormesis. For example, some cancer tissue cells may exhibit hormetic responses to an anticancer drug while some other cancer tissue cells may not. These findings suggest that living units showing hormesis may also be less susceptible than living units not showing hormesis. However, these findings are preliminary and cannot be generalized or assumed to be a norm yet. New studies are needed to evaluate how NOAEL shifts depending on the occurrence of hormesis.

Plant susceptibility to ozone: A Tower of Babel? 

Journal Paper
Agathokleous, E. and Saitanis, C.J., 
Science of the Total Environment,Volume 703, 134962
Publication year: 2020

Abstract

In a world with climate change and environmental pollution, modern Biology is concerned with organismic susceptibility. At the same time, policy and decision makers seek information about organismic susceptibility. Therefore, information about organismic susceptibility may have far-reaching implications to the entire biosphere that can extend to several forthcoming generations. Here, we review a sample of approximately 200 published peer-reviewed articles dealing with plant response to ground-level ozone to understand how the information about susceptibility is communicated. A fuzzy and often incorrect terminology was used to describe the responsiveness of plants to ozone. Susceptibility was classified too arbitrarily and this was reflected to the approximately 50 descriptive words that were used to characterize susceptibility. The classification of susceptibility was commonly based on calculated probability (p) value. This practice is inappropriate as p values do not provide any basis for effect or susceptibility magnitude. To bridge the gap between science and policy decision making, classification of susceptibility should be done using alternative approaches, such as effect size estimates in conjunction with multivariate ordination statistics.

Ozone biomonitoring: A versatile tool for science, education and regulation

Journal Paper
Agathokleous E., Saitanis C.J., Feng Z., De Marco A., Araminiene V., Domingos M., Sicard P., Paoletti E.
Current Opinion in Environmental Science & Health, 18:7-13
Publication year: 2020

Abstract

Ground-level ozone (O3) pollution can adversely affect human health and vegetation, thus being an important environmental issue nowadays. Ozone biological monitoring (biomonitoring) is a method of O3 monitoring by observing quantitative changes in living organisms physically present in a specific environment. Here, we provide a concise view of the field of O3 biomonitoring, along with recent advances that are expected to advance this field in the future. We also recommend that O3 biomonitoring is included in citizen science initiatives as well as in worldwide curricula of educational institutions. Policy-makers and general public may not understand biomonitoring data; hence, a major challenge is how to communicate the information to the audience in a way that permits the best comprehension.

Ozone affects plant, insect and soil microbial communities and threatens terrestrial ecosystems and biodiversity

Journal Paper
Agathokleous E., Feng Z., Oksanen E., Sicard P., Qi Wang1, Saitanis C.J.,  Araminiene V., Blande J.D., Hayes F., Calatayud V., Domingos M., Veresoglou S., Peñuelas J., Wardle D.A., De Marco A., Li Z., Harmens H., Yuan X., Vitale M., Kreft H., Sala O.E., Paoletti E
Science Advances, Vol. 6, no. 33, eabc1176 DOI: 10.1126/sciadv.abc1176
Publication year: 2020

Abstract

Elevated ground-level ozone (O3) pollution can adversely affect plants and inhibit plant growth and productivity, threatening food security and ecological health. It is therefore essential to develop measures to protect plants against O3-induced adverse effects. Here we summarize the current status of phytoprotection against O3-induced adverse effects and consider recent scientific and engineering advances, to provide a novel perspective for maximizing plant health while reducing environmental/ecological risks in an O3-polluted world. We suggest that nanoscience and nanotechnology can provide a new dimension in the protection of plants against O3-induced adverse effects, and recommend that new studies are based upon a green chemistry perspective.

Elevated tropospheric ozone concentrations induce adverse effects in plants. We reviewed how ozone affects (i) the composition and diversity of plant communities by affecting key physiological traits; (ii) foliar chemistry and the emission of volatiles, thereby affecting plant-plant competition, plant-insect interactions, and the composition of insect communities; and (iii) plant-soil-microbe interactions and the composition of soil communities by disrupting plant litterfall and altering root exudation, soil enzymatic activities, decomposition, and nutrient cycling. The community composition of soil microbes is consequently changed, and alpha diversity is often reduced. The effects depend on the environment and vary across space and time. We suggest that Atlantic islands in the Northern Hemisphere, the Mediterranean Basin, equatorial Africa, Ethiopia, the Indian coastline, the Himalayan region, southern Asia, and Japan have high endemic richness at high ozone risk by 2100.

On the atmospheric ozone monitoring methodologies

Journal Paper
Saitanis J.C., Sicard P., De Marco A., Feng Z., Paoletti E., Agathokleous E.
Current Opinion in Environmental Science & Health, Volume 18, Pages 40-46
Publication year: 2020

Abstract

Elevated ground-level ozone (O3) pollution can adversely affect plants and inhibit plant growth and productivity, threatening food security and ecological health. It is therefore essential to develop measures to protect plants against O3-induced adverse effects. Here we summarize the current status of phytoprotection against O3-induced adverse effects and consider recent scientific and engineering advances, to provide a novel perspective for maximizing plant health while reducing environmental/ecological risks in an O3-polluted world. We suggest that nanoscience and nanotechnology can provide a new dimension in the protection of plants against O3-induced adverse effects, and recommend that new studies are based upon a green chemistry perspective.

Ozone (O3) is a natural component of the atmosphere. It occurs in the stratosphere, where it protects biota against ultraviolet radiation, but also in the lower troposphere, where it can directly harm biota. Because of its (i) high toxicological potential for biota, (ii) high reactivity and molecular instability, and (iii) difficult differentiation from other reactive oxygen species, O3 challenges scientists in a continuing effort to develop methods for its monitoring. We present here the operation principles of the most used techniques, along with some new technological developments for atmospheric O3 monitoring, with emphasis upon near surface. Huge amounts of scientific data have been produced thanks to progresses in O3 monitoring technologies. However, it remains a challenge to further develop reliable methods with rapid response and high sensitivity to ambient O3, which will also be free from the disadvantages of the current technologies.

Exogenous application of chemicals for protecting plants against ambient ozone pollution: What should come next?

Journal Paper
Saitanis J.C. and Agathokleous E.
Current Opinion in Environmental Science & Health, 19: 100215
Publication year: 2020

Abstract

Elevated ground-level ozone (O3) pollution can adversely affect plants and inhibit plant growth and productivity, threatening food security and ecological health. It is therefore essential to develop measures to protect plants against O3-induced adverse effects. Here we summarize the current status of phytoprotection against O3-induced adverse effects and consider recent scientific and engineering advances, to provide a novel perspective for maximizing plant health while reducing environmental/ecological risks in an O3-polluted world. We suggest that nanoscience and nanotechnology can provide a new dimension in the protection of plants against O3-induced adverse effects, and recommend that new studies are based upon a green chemistry perspective.

Differential Ozone Responses Identified Among Key Rust Susceptible Wheat Genotypes

Journal Paper
Mashaheet A.M., Burkey K.O., Saitanis C.J., Abdelrhim A.S., Ullah R., Marshall D.S.
Agronomy 2020, 10, 1853.
Publication year: 2020

Abstract

Increasing ambient ozone (O3) concentrations and resurgent rust diseases are two concomitant limiting factors to wheat production worldwide. Breeding resilient wheat cultivars bearing rust resistance and O3 tolerance while maintaining high yield is critical for global food security. This study aims at identifying ozone tolerance among key rust-susceptible wheat genotypes [Rust near-universal susceptible genotypes (RnUS)], as a first step towards achieving this goal. Tested RnUS included seven bread wheat genotypes (Chinese Spring, Line E, Little Club, LMPG 6, McNair 701, Morocco and Thatcher), and one durum wheat line (Rusty). Plants were treated with five O3 concentrations (CF, 50, 70, 90, and 110 ppb), in two O3 exposure systems [continuous stirred tank reactors (CSTR) and outdoor-plant environment chambers (OPEC)], at 21–23 Zadoks decimal growth stage. Visible injury and biomass accumulation rate were used to assess O3 responses. Visible injury data showed consistent order of genotype sensitivity (Thatcher, LMPG 6 > McNair 701, Rusty > Line E, Morocco, Little Club > Chinese Spring). Additionally, leaves at different orders showed differential O3 responses. Biomass accumulation under O3 stress showed similar results for the bread wheat genotypes. However, the durum wheat line “Rusty” had the most O3-sensitive biomass production, providing a contrasting O3 response to the tolerance reported in durum wheat. Chinese Spring was the most tolerant genotype based on both parameters and could be used as a source for O3 tolerance, while sensitive genotypes could be used as sensitive parents in mapping O3 tolerance in bread wheat. The suitability of visible symptoms and biomass responses in high-throughput screening of wheat for O3 tolerance was discussed. The results presented in this research could assist in developing future approaches to accelerate breeding wheat for O3 tolerance using existing breeding materials.

Stress response and population dynamics: Is Allee effect hormesis?

Journal Paper
Saitanis C.J., and Agathokleous E.
Science of the Total Environment, 682, pp. 623-628
Publication year: 2019

Abstract

Hormesis is a fundamental notion in ecotoxicology while competition between organisms is an essential notion in population ecology and species adaptation and evolution. Both sub-disciplines of ecology deal with the response of organisms to abiotic and biotic stresses. In ecotoxicology, the Linear-non-Threshold (LNT), Threshold and Hormetic models are used to describe the dominant responses of a plethora of endpoints to abiotic stress. In population ecology, the logistic, theta-logistic and the Allee effect models are used to describe the growth of populations under different responses to (biotic) stress induced by population density. The per capita rate of population increase (r) measures species fitness. When it is used as endpoint, the responses to population density seem to perfectly correspond to LNT, Threshold and Hormetic responses to abiotic stress, respectively. Our analysis suggests the Allee effect is a hormetic-like response of r to population density, an ultimate biotic stress. This biphasic dose-response model appears across different systems and situations (from molecules to tumor growth to population dynamics), is highly supported by ecological and evolutionary theory, and has important implications in most sub-disciplines of biology as well as in environmental and earth sciences. Joined multi-disciplinary efforts would facilitate the development and application of advanced research approaches for better understanding potential planetary-scale implications.

Predicting the effect of ozone on vegetation via the linear non-threshold (LNT), threshold and hormetic dose-response models

Journal Paper
Agathokleous, E., Belz, R.G., Calatayud, V., De Marco, A., Hoshika, Y., Kitao, M., Saitanis, C.J., Sicard, P., Paoletti, E., Calabrese, E.J.
Science of the Total Environment 649: 61-74.
Publication year: 2019

Abstract

The nature of the dose-response relationship in the low dose zone and how this concept may be used by regulatory agencies for science-based policy guidance and risk assessment practices are addressed here by using the effects of surface ozone (O3) on plants as a key example for dynamic ecosystems sustainability. This paper evaluates the current use of the linear non-threshold (LNT) dose-response model for O3. The LNT model has been typically applied in limited field studies which measured damage from high exposures, and used to estimate responses to lower concentrations. This risk assessment strategy ignores the possibility of biological acclimation to low doses of stressor agents. The upregulation of adaptive responses by low O3 concentrations typically yields pleiotropic responses, with some induced endpoints displaying hormetic-like biphasic dose-response relationships. Such observations recognize the need for risk assessment flexibility depending upon the endpoints measured, background responses, as well as possible dose-time compensatory responses. Regulatory modeling strategies would be significantly improved by the adoption of the hormetic dose response as a formal/routine risk assessment option based on its substantial support within the literature, capacity to describe the entire dose-response continuum, documented explanatory dose-dependent mechanisms, and flexibility to default to a threshold feature when background responses preclude application of biphasic dose responses.

Effects of ozone and ammonium sulfate on cauliflower: emphasis on the interaction between plants and insect herbivores

Journal Paper
Agathokleous, E., WaiLi,  Y., Ntatsi, G., Konno, K., Saitanis, C.J., Kitao, M., and Koike, T.
 Science of the Total Environment 659: 995-1007
Publication year: 2019

Abstract

Ammonium sulfate [(NH4)2SO4] deposition and elevated ozone (O3) concentrations may negatively affect plants and trophic interactions. This study aimed to evaluate for the first time the interactive effects of high (NH4)2SO4 load and elevated O3 levels on cauliflower (Brassica oleracea L.) under field conditions. Cauliflower seedlings were treated with 0 (AS0) or 50 (AS50) kg ha−1 (NH4)2SO4 and exposed to ambient (AOZ, ≈20 ppb) or elevated (EOZ, ≈55 ppb) O3 for about one month, in a Free Air O3 Concentration Enrichment (FACE) system. The oligophagous diamondback moth (Plutella xylostella Linnaeus, 1758) showed a clear preference towards the seedlings treated with AS50, which intensively grazed. Plant-herbivore interactions were driven by (NH4)2SO4 availability, rather than O3, via increased nitrogen content in the leaves. Further laboratory bioassays were followed to confirm the validity of these observations using polyphagous Eri silkmoth larvae (Samia ricini) as a biological model in a standardized experimental setup. Choice assays, where larvae could select leaves among leaf samples from the different experimental conditions, and no-choice assays, where larvae could graze leaves from just one experimental condition, were conducted. In the choice assay, the larvae preferred AS50-treated leaves, in agreement with the field observations with diamondback moth. In the no-choice assay, larval body mass growth was inhibited when fed with leaves treated with EOZ and/or AS50. Larvae fed with AS50-treated leaves displayed increased mortality. These observations coincide with higher NO3 and Zn content in AS50-treated leaves. This study shows that plant-herbivore interactions can be driven by (NH4)2SO4 availability, independently of O3, and suggests that high N deposition may have severe health implications in animals consuming such plant tissues.

Key message: Plant-herbivore interactions are driven by high (NH4)2SO4 availability, independently of O3.

Commentary: EPA’s proposed expansion of dose-response analysis is a positive step towards improving its ecological risk assessment

Journal Paper
Agathokleous, E., Anav, A., Araminiene, V., De Marco, A., Domingos, M., Kitao, M., Koike, T., Manning, W.J., Paoletti, E., Saitanis, C.J., Sicard, P., Vitale, M., Wang, W., and Calabrese, E.J.
Environmental Pollution 246: 566-570
Publication year: 2019

Abstract

The United States Environmental Protection Agency (US EPA) has recently proposed changes to strengthen the transparency of its pivotal regulatory science policy and procedures. In this context, the US EPA aims to enhance the transparency of dose-response data and models, proposing to consider for the first time non-linear biphasic dose-response models. While the proposed changes have the potential to lead to markedly improved ecological risk assessment compared to past and current approaches, we believe there remain open issues for improving the quality of ecological risk assessment, such as the consideration of adaptive, dynamic and interactive effects. Improved risk assessment including adaptive and dynamic non-linear models (beyond classic threshold models) can enhance the quality of regulatory decisions and the protection of ecological health. We suggest that other countries consider adopting a similar scientific-regulatory posture with respect to dose-response modeling via the inclusion of non-linear biphasic models, that incorporate the dynamic potential of biological systems to adapt (i.e., enhancing positive biological endpoints) or maladapt to low levels of stressor agents.

A quantitative assessment of hormetic responses of plants to ozone

Journal Paper
Agathokleous, E., Araminiene, V., Belz, R.G., Calatayud, V., De Marco, A., Domingos, M., Feng, Z., Hoshika, Y., Kitao, M., Koike, T., Paoletti, E., Saitanis, C.J., Sicard, P., Calabrese, E.J.
Environmental Research, 176, art. no. 108527.
Publication year: 2019

Abstract

Evaluations of ozone effects on vegetation across the globe over the last seven decades have mostly incorporated exposure levels that were multi-fold the preindustrial concentrations. As such, global risk assessments and derivation of critical levels for protecting plants and food supplies were based on extrapolation from high to low exposure levels. These were developed in an era when it was thought that stress biology is framed around a linear dose-response. However, it has recently emerged that stress biology commonly displays non-linear, hormetic processes. The current biological understanding highlights that the strategy of extrapolating from high to low exposure levels may lead to biased estimates. Here, we analyzed a diverse sample of published empirical data of approximately 500 stimulatory, hormetic-like dose-responses induced by ozone in plants. The median value of the maximum stimulatory responses induced by elevated ozone was 124%, and commonly <150%, of the background response (control), independently of species and response variable. The maximum stimulatory response to ozone was similar among types of response variables and major plant species. It was also similar among clades, between herbaceous and woody plants, between deciduous and evergreen trees, and between annual and perennial herbaceous plants. There were modest differences in the stimulatory response between genera and between families which may reflect different experimental designs and conditions among studies. The responses varied significantly upon type of exposure system, with open-top chambers (OTCs) underestimating the maximum stimulatory response compared to free-air ozone-concentration enrichment (FACE) systems. These findings suggest that plants show a generalized hormetic stimulation by ozone which is constrained within certain limits of biological plasticity, being highly generalizable, evolutionarily based, and maintained over ecological scales. They further highlight that non-linear responses should be taken into account when assessing the ozone effects on plants.

Parasitoids and predators of Physokermes hellenicus (Hemiptera: Coccomorpha: Coccidae) in Greece

Journal Paper
Papanastasiou, I.,  Kavallieratos, N.G., Saitanis, C.J.,  Chatzaki, M.d,  Papadoulis, G.,  Emmanouel, N.G. 
Journal of Economic Entomology. 111(3), pp. 1121-1130
Publication year: 2018

Abstract

The genus Physokermes Targioni Tozzetti includes species that are distributed in the Holarctic region and feed on conifers. The recently described scale Physokermes hellenicus (Kozár and Gounari) (Hemiptera: Coccidae) is an endemic species of Greece whose host plants are fir trees of the genus Abies (Pinales: Pinaceae). It is considered as beneficial scale insect species since its honeydew secretions are exploited by honeybees leading to the production of a special honey with important physicochemical characteristics. Since there are no previous data on the natural enemies of P. hellenicus, an investigation was carried out during 2013 in forested areas of eight mountains in south and central Greece aiming to correlate the presence of P. hellenicus with certain parasitoids and predators. Seven species of Encyrtidae, Eulophidae, Pteromalidae, and Eurytomidae (Hymenoptera); five species of Anthribidae and Coccinellidae (Coleoptera); and four species of Dictinidae, Linyphiidae, and Theridiidae (Araneae) were identified. Twelve of them were identified at the species level while four at the genus level. Among them Microterys lunatus (Dalman) (Hymenoptera: Encyrtidae), Pseudorhopus testaceus (Ratzeburg) (Hymenoptera: Encyrtidae), and Anthribus fasciatus Forster (Coleoptera: Anthribidae) were the most abundant natural enemies of P. hellenicus adult female while Metaphycus unicolor Hoffer (Hymenoptera: Encyrtidae) and Trichomasthus sp. (Hymenoptera: Encyrtidae) were found to parasitize P. hellenicus male nymph. Cinetata gradata (Simon) (Araneae: Linyphiidae) is reported for first time in the Greek arachnofauna. Our results suggest that the abundance of the fir scale P. hellenicus could be affected by a complex of parasitoid and predator species of different taxa. Future long-term research on these species in relation with abiotic factors would help to understand possible fluctuation of the scale’s population.

High doses of ethylenediurea (EDU) as soil drenches did not increase leaf N content or cause phytotoxicity in willow grown in fertile soil

Journal Paper
Agathokleous E., Paoletti E., Manning W.J., Kitao M., Saitanis C.J., Koike T.
Ecotoxicology and Environmental Safety 147: 574-584
Publication year: 2018

Abstract

Ground-level ozone (O3) levels are nowadays elevated in wide regions of the Earth, causing significant effects on plants that finally lead to suppressed productivity and yield losses. Ethylenediurea (EDU) is a chemical compound which is widely used in research projects as phytoprotectant against O3 injury. The EDU mode of action remains still unclear, while there are indications that EDU may contribute to plants with nitrogen (N) when the soil is poor in N and the plants have relatively small leaf area. To reveal whether the N content of EDU acts as a fertilizer to plants when the soil is not poor in N and the plants have relatively large total plant leaf area, willow plants (Salix sachalinensis Fr. Schm) were exposed to low ambient O3 levels and treated ten times (9-day interval) with 200 mL soil drench containing 0, 800 or 1600 mg EDU L−1. Fertilizer was added to a nutrient-poor soil, and the plants had an average plant leaf area of 9.1 m2 at the beginning of EDU treatments. Indications for EDU-induced hormesis in maximum electron transport rate (Jmax) and ratio of intercellular to ambient CO2 concentration (Ci:Ca) were observed at the end of the experiment. No other EDU-induced effects on leaf greenness and N content, maximum quantum yield of photosystem II (Fv/Fm), gas exchange, growth and matter production suggest that EDU did not act as N fertilizer and did not cause toxicity under these experimental conditions.

Effects of ozone (O3) and ethylenediurea (EDU) on the ecological stoichiometry of a willow grown in a free-air exposure system.

Journal Paper
Agathokleous, E., Kitao, M., Qingnan, C., Saitanis, C.J., Paoletti, E., Manning, W.J., Watanabe, T., Koike, T.
Environmental Pollution 238C: 663-676.
Publication year: 2018

Abstract

Ground-level ozone (O3) concentrations have been elevating in the last century. While there has been a notable progress in understanding O3 effects on vegetation, O3 effects on ecological stoichiometry remain unclear, especially early in the oxidative stress. Ethyelenediurea (EDU) is a chemical compound widely applied in research projects as protectant of plants against O3 injury, however its mode of action remains unclear. To investigate O3 and EDU effects early in the stress, we sprayed willow (Salix sachalinensis) plants with 0, 200 or 400 mg EDU L−1, and exposed them to either low ambient O3 (AOZ) or elevated O3 (EOZ) levels during the daytime, for about one month, in a free air O3 controlled exposure (FACE); EDU treatment was repeated every nine days. We collected samples for analyses from basal, top, and shed leaves, before leaves develop visible O3 symptoms. We found that O3 altered the ecological stoichiometry, including impacts in nutrient resorption efficiency, early in the stress. The relation between P content and Fe content seemed to have a critical role in maintaining homeostasis in an effort to prevent O3-induced damage. Photosynthetic pigments and P content appeared to play an important role in EDU mode of action. This study provides novel insights on the stress biology which are of ecological and toxicological importance.